Cyclometallated complexes of palladium(II) with a C, N, N^{\prime} terdentate Schiff base donor ligand. Oxidative addition of an aryl-chlorine bond to palladium (0)

José M. Vila ${ }^{*}$, Miguel Gayoso ${ }^{1}$, M² Teresa Pereira, Margarita López Torres, Jesús J. Fernández, Alberto Fernández, Juan M. Ortigueira
Deparment of Inorganic Chemistry. Unitersity of Santiago, E-I570S Sanaiago de Comprarela, Spain

Received 25 July 1996; revised 18 September 1996

Abstract

Treatment of N-(2-chlorobenzylidene)- N, N^{\prime}-dimethylathylenediamine. $2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2}$ NMe Ne_{3}, with tris(dibenzylideneace- the palladium atom bonded to a C, N, N^{\prime} terdentate donor tigand. Treatment of 1 with tertiary monophosphines gave the cyclometailated ligand is either trans to the phenyl carbon arom (2,3) or trans to the imine nitrogen atom (4, 5). Treatment of 1 with silver perchlorate followed by reaction with teriary monophosphines gave the cyclometallated complexes [$\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{N}^{2}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{3}\right.$] (L) ${ }^{2} \mathrm{ClO}_{4}$] (6: $\mathrm{L}=\mathrm{PPh}_{3}: 7: \mathrm{L}=\mathrm{PEPPh}_{2}$: 8: $\mathrm{L}=\mathrm{PEt}_{2} \mathrm{Ph}_{\text {; }}$ 9: $\mathrm{L}=\mathrm{PEt}_{3}$). Reaction of 1 with thallium acetylacetonate gave the cyclomerallated coumplex $\left[\mathrm{Pu}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NM}_{2} \mathrm{KH}_{3} \mathrm{CCOCHCOCH}_{3}\right)\right]$ (10). Treatment of 1 with ditertiary diphosphines in a complex 1 /diphosphine $2: 1$ molar ratio gave the dinuclear cyclometallated complexes [$\left\{\mathrm{Pd}_{4}\left(\mathrm{C}_{6} \mathrm{H} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} \mathrm{KCl}\right)\right]_{2}(\mathrm{~L}-\mathrm{L})$] (11: $\mathrm{L}-\mathrm{L}=$ irans $\left.\left.-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHP}-\mathrm{Ph}_{2} ; 12: \mathrm{L}-\mathrm{L}=\mathrm{Ph}_{2} \mathrm{PCCH}_{2}\right)_{3} \mathrm{PP}_{2} ; 13: \mathrm{L}-\mathrm{L}=\mathrm{Ph}_{2} \mathrm{PCH}_{2}\right)_{4} \mathrm{PPh}_{2}$, where the phosphorus atom is troses to the phenyl carbon atom. Treatment of I with silver perchloraue followed by diteriary diphosphines in a complex 1 /diphosphine $2: 1$ molar ratio gave the dinuclear cyclonetallated complexes $\left\{\left\{\mathrm{Pd}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right]_{2}(\mathrm{~L}-\mathrm{L})\right] \mathrm{ClO}_{4}\right]_{2}\left[14: \mathrm{L}-\mathrm{L}=\right.$ frums- $\mathrm{Ph}_{2} \mathrm{P}-$ $\mathrm{CH}=\mathrm{CHPPh}_{2}$; $\left.15: \mathrm{L}-\mathrm{L}=\mathrm{Ph}_{2} \mathrm{P}_{\left(\mathrm{CH}_{2}\right)_{3}} \mathrm{PPh}_{2}: 16: \mathrm{I}-\mathrm{I}=\mathrm{Ph}_{2} \mathrm{P}_{\left(\mathrm{CH}_{2}\right)_{4}} \mathrm{PPh}_{2}\right)$. Reaction of 1 with ditertiary diphosphines in a conmptex 1/diphosphine 1:1 molar ratio. and silver perchlorate as appropriate, gave the cyclometallated complexes $\left.(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} \mathrm{KCl}\left(\mathrm{PH}_{2} \mathrm{PCCH}_{2}\right)_{4} \mathrm{PPh}_{2}-\mathrm{P}, \mathrm{P}\right)$ (2 D$)$.

Kepwords: Palladium; Cyclometallation; Schiff base; Teniary phosphine: Oxidative addition

1. Introduction

Cyclometallation is an important part of organometallic chemistry and various reviews covering this area have appeared [1]. Cyclometallated compounds show important applications, such as their use in regiospecific organic and organometallic synthesis [2,3] and in insertion reactions [4,5]. Bidentate nitrogen donor ligands which may undergo double cyclometallation to give compounds with two $\sigma \mathrm{M}-\mathrm{C}$ bonds and with coor-

[^0]dination of each nitrogen atom to one of the metal centers have been reported. To name but a few, $N, N, N^{\prime}, N^{\prime}$-tetraethyl para-xylene- α, α^{\prime}-diamines [6], azines [7], diphenylpyrimidines [8], diphenylpyrazines [9], benzylidenehydrazones [10], and bis(N-benzyi-idene)-1,4-phenylenediamines [11] always give doubly cyclometallated complexes; when Schiff bases derived from dialdehydes such as terephthalaldehyde or isophthalaldahyde were used in cyclometallation reactions, mono- or dicyclometallated compounds could be obtained [12,13$]$. More recently we have become interested in bidentate and terdentate ligands which coordinate to the metal center through two donor atoms simultaneously, giving compounds with two fused five-
membered rings at palladium or platinum(11) [14]; the synthesis of these complexes is achieved via an oxidative addition process. Oxidative addition by halogenated Schiff bases has been used before as a means to obtain cyclometallated compounds [15-17]. An inceresting feature of these compounds is that in the metallation process of the ligands, mononuclear species are produced, as opposed to the dinuclear complexes which are usually obtained when mono- and bidentate Schiff bases are reacted with palladium(II) zsetate. In the fommer case, the cyclopalladated or cycloplatinated starting materials show a greater versatility towards reactions with neutral or anionic ligands, e.g. with Lewis bases such as tertiary phosphines or diphosphines, which may vary their coordination site in the complex, whereas in the latter one, this is more unlikely, probably as a consequence of the dimeric nature of the starting materials. This is one of the features we have encountered upon studying cyclometallation reactions of halogenated organic ligands and the results described in this paper show that the coordination position of the phosphine ligand depends on the synthetic conditions employed. In the present paper we report the intramolecular oxidative addition of N-(2-chlorobenzylidene)- N, N^{\prime}-dimethylethylemediamine (this ligand has been used earlier in oxidative addition reactions involving platinum; see Ref. [17]) to uris(dibenzylideneacetone)dipalladium(0) to yield the cyclometallated complex 1 with two fused rings at palladium and subsequent reactions of 1 with phosphine or diphosphine ligands in different reaction conditions. The reaction of 1 with thallium acetylacetonate is also described.

2. Results and discussion

For the convenience of the reader the compounds and reactions are shown in Schemes 1 and 2. The compounds described in this paper were characterised by elemental analysis and by IR spectroscopy (data in Section 3) and by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ (Table 1) and (in part) ${ }^{13} \mathrm{C}$ NMR spectroscopy (Section 3).

The oxidative addition reaction of N-(2-chloroben-zylidene)- N, N^{\prime}-dimethylethylenediamine, 2 $\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}$, with trisídibenzylideneacetone)dipalladium(0) in benzene gave the palladium(II) mononuclear cyclometallated complex $\left[\mathrm{Pd}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right](\mathrm{Cl})\right]$ (1), in 60% yield, which was fully characterized. The 'H NMR spectrum showed well-defined 'virtual tiplet' pattems at $\delta 3.68$ and $\delta 2.89 \mathrm{ppm}$, for the $=\mathrm{N}-\mathrm{CH} H_{2}$ and $\mathrm{CH}_{2}-\mathrm{NMe}_{2}$ protons respectively, with $N=12 \mathrm{~Hz}$; a singlet at $\delta 2.67 \mathrm{ppm}(6 \mathrm{H})$ was assigned to the methyl protons. The $\mathrm{N} M e_{2}$ resonance was shifted to higher frequency, showing palladium coordination to the amine nitrogen atom. A singlet at $\delta 7.52$ was assigned to the
$H C-N$ proton, shifted to lower frequency on palla-dium-nitrogen coordination [18].

The ${ }^{13} \mathrm{C}$ NMR spectrum showed resonances at δ $172.2(\mathrm{C}=\mathrm{N}), \delta 150.2(\mathrm{C} 6), \delta 158.0(\mathrm{C} 1)$ and $\delta 48.3$ ($\mathrm{N} M e_{2}$); the former two were shifted to higher frequency by 13.3 and 26.9 ppm respectively from those for the free ligand, confirming that metallation had taken place [19]. The Cl resonance was also shifted to bigher frequency, as expected. The two methylene resonances were separated by ca. 10 ppm , due to coordination of the amine nitrogen to the metal arom (vide infra). There was no noticeable quadrupolar broadening of these resonances with the ${ }^{105} \mathrm{Pd}(22 \%$ natural abundance, $i=5 / 2$) nucleus.

The IR spectrum (see Section 3) showed a band at $1616 \mathrm{~cm}^{-1}$, shifted to lower wavenumbers, consistent with palladium coordination to the nitrogen atom $[20,21]$.

Treatment of $2 \cdot \mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}$ with palladium(II) acetate gave reduction to $\mathrm{Pd}(0)$; no oxidative addition of $\mathrm{C}-\mathrm{Cl}$ bonds to metallic palladium was observed, as has been described before [16]. Reaction of $2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}$ with $\mathrm{Li}_{2}\left[\mathrm{PdCl}_{4}\right]$ did not yield any syclometallated product.

Treatment of 1 with tertiary phosphines gave the mononucler cyclometallated complexes $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)(\mathrm{Cl})(\mathrm{L})\right] \quad(2: \quad \mathrm{L}=$ $\mathrm{PPh}_{3} ;$ 3: $\mathrm{L}=\mathrm{PEtPh}_{2} ;$ 4: $\left.\mathrm{L}=\mathrm{PEt}_{2} \mathrm{Ph} ; 5: \mathrm{L}=\mathrm{PEt}_{3}\right)$ respectively, and treatment of 1 with silver perchlorate, followed by tertiary phosphines, gave the mononuclear cyclometallated complexes $\left[\mathrm{Pd}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2}{ }^{-}\right.\right.$

Scheme 1. (i) $1 / 2\left[\mathrm{Pd}_{2}\left(\mathrm{dba}_{3}\right]_{3}\right.$ (ii) I qquiv. of L ; (iii) AgClO_{4} followed by lequiv. of L ; (iv) Th(icac).

Scheme 2. (i) L; (ii) AgClO_{4} followed by L ; (iii) AgClO_{\perp} followed by L : (iv) cis-dppe in wetone: (y) dppb in acetone.
$\mathrm{CH}_{2} \mathrm{NMe}_{2}$)($\mathrm{L}^{2} \mathrm{KClO}_{4}$] (6: $\mathrm{L}=\mathrm{PPh}_{3} ; 7$ 7: $\mathrm{L}=\mathrm{PEtPh}_{2} ; 8$: $\mathrm{L}=\mathrm{PEt}_{2} \mathrm{Ph} ; 9: \mathrm{L}=\mathrm{PEt}_{3}$) respectively, which were fully characterised (see Section 3 and Table 1). Electric conductivity measurements in dry acetonitrile solution showed complexes 6-9 to be $1: 1$ electrolytes [22] (see Section 3). In complexes 2 and 3 no coupling of the $H \mathrm{C}=\mathrm{N}$ and $H 5$ proton resonances to the ${ }^{31} \mathrm{P}$ nucteus was observed; also, the $=\mathrm{NCH}$ 2 resonance was not coupled to the ${ }^{31} \mathrm{P}$ nucleus. However, in complexes 4 and 5 the $\mathrm{HC}=\mathrm{N}, \mathrm{HS}$ and $\delta=\mathrm{NCH}_{2}$ proton resonances were coupled to the ${ }^{31} \mathrm{P}$ nucleus, as corresponds to the phosphine ligand being cis to the metallated carton atom. We and others have observed that, in cyclometallated palladium(II) compounds of Schiff bases with only one tertiary monophosphine coordinated to the metal center, this ligand usually shows a trans geometry with respect to the imine nitrogen atom [16, 23-27]; we have also found that the $H \mathrm{C}=\mathrm{N}$ and $H 5$ proton resonances are always coupled to the ${ }^{31} \mathrm{P}$ nucleus, except when the $\mathrm{Pd} \leftarrow \mathrm{N}$ bond was cleaved. Coupling of the $H 5$ resonance to the ${ }^{31} \mathrm{P}$ nucleus trans to carbon has been observed in complexes with chelating diphosphines; in this case there could be coupling through the carbon chain between the phosphorus atoms [28,29]. However, even in these cases no coupling between the $H \mathrm{C}=\mathrm{N}$ nucleus to the ${ }^{31} \mathrm{P}$ nucleus trans to carbon was detected (vide infra). In the present case we tentatively attribute these findings to different coordination sites of the phosphine ligand in compounds $\mathbf{2 , 3}$ on the one hand (\mathbf{P} trans to C), and of compounds 4,5 on
the other hand (P trans to N), in spite of the fact that the ${ }^{31} \mathrm{P}$ resonance shows a rather high value in compounds 2 and $\mathbf{3}$ for phosphorus trans to a phenyl carbon atom as compared to values found previously [25] (Table 1). We suggest that the phosphine ligand produces cleavage of the $\mathrm{Pd} \leftarrow \mathrm{NM}_{2}$, bous with coordination of the phosphorus atom to the vacant site at palladium, trans to the phenyl carbon atom. This coordination prevails with the less basic phosphines, i.e. $\mathrm{PPh}_{3}, \mathrm{PEtPh}_{2}$ and the diphosphines trans-dppe, dppe and dppb. However, with the more basic phosphines, i.e. $\mathrm{PEt}_{2} \mathrm{Ph}$ and PEt_{3}, palladium coordination is rearranged to give complexes with the phosphine ligand trans to the imine nitrogen atom. [This could be related to the π-acceptor properties of the phosphine ligands. We treated compound 1 with 2 mol of PPh_{3} and the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR results show that the phosphine ligands are mutually trans (only one singlet is observed in the ${ }^{31} \mathrm{P}$ NMR) as we have observed before [25]; again there is a change in the coordination site of the ligand initially trans to the phenyl carbon atom. ${ }^{1} \mathrm{H}$ NMR data: $\delta(\mathrm{HC}=\mathrm{N}) 8.20$. $\delta(\mathrm{H} 2) 7.25 \mathrm{~d}, \delta(\mathrm{H} 3) 6.87 \mathrm{t}, \delta(\mathrm{H} 4) 6.51 \mathrm{t}, \delta(\mathrm{H} 5) 6.42 \mathrm{~d}$, $\delta\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) 4.06, \quad 2.82, N=12.8 \mathrm{~Hz}, \quad \delta\left(\mathrm{NMe}_{2}\right)$ $2.91 \mathrm{ppm} .{ }^{3} \mathrm{~J}(\mathrm{H} 2 \mathrm{H} 3) \quad 7.3 .{ }^{3} \mathrm{~J}(\mathrm{H} 3 \mathrm{H} 4) \quad 7.4,{ }^{3} \mathrm{~J}(\mathrm{H} 4 \mathrm{H} 5)$ $7.4 \mathrm{~Hz} .{ }^{31} \mathrm{P}$ NMR $\delta 27.3 \mathrm{ppm}$.] Furthermore, when the chloride ion is removed by the silver salt, this leaves a vacant position at palladium trans to the imine nitrogen atom, which renders the phosphine ligand trans to nitrogen in all cases (compounds 6-9 and 14-16). The $\delta \mathrm{Me}_{2}$ resonance in the ${ }^{\mathrm{H}} \mathrm{H}$ NR spectrum for com-
pounds 2-5 lies ca. $\delta 2.30 \mathrm{ppm}$ as corresponds to the non-coordinated NMe_{2} group (cf. $\delta 2.31 \mathrm{ppm}$ for the free ligand); for compounds $6-9$ values close to δ
2.70 ppm would be expected (cf. $\delta 2.67 \mathrm{ppm}$ for 1), however the $\delta \mathrm{Me}_{2}$ resonance appears in the range δ $2.16-2.02$ for compounds $6-8$ and at $\delta 2.74 \mathrm{ppm}$ for

Table 1

compound 9. We suggest the lower δ value observed for the $\delta \mathrm{Me}_{2}$ resonance in $6-8$ is due to shielding of a phosphine phenyl ring; as proof, in the compound with triethylphosphine, 9 , the $\delta \mathrm{Me}_{2}$ resonance appears at δ 2.74 ppm . The separation of the $\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}$ resonances in the ${ }^{19} \mathrm{C}$ NMR spectra of compounds 6-9, ca. 10-15 ppin, shows coordination of the NMe_{2} group to the metal atom, as opposed to compounds $2,3,5$, where it is ca. 4-7 ppm.

The ${ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right]$ NMR spectra show a singlet resonance for the phosphorus nucleus in 2-5 and 6-9; substitution of the phosphine phenyl groups for ethyl groups shifts the ${ }^{31} \mathrm{P}$ resonance to lower frequency (Table 1). Comparison of the difference in the ${ }^{3 /} P$ chemical shift values for pairs of compounds bearing the same phosphine ligand, $\Delta \delta$, showed the resonances for compounds 6-9 to be at lower frequency than those for $2-5$ in all cases (Table 1). However, $\Delta \delta$ is greater when the ${ }^{31} P$ nucleus is always trans to nitrogen $[\Delta 8(4,8)=8.86 \mathrm{ppm}$; $\Delta \delta(5,9)=7.0 \mathrm{ppm}]$ than when the ${ }^{31} \mathrm{P}$ nucleus is trans to different atoms in the complexes, i.e. ${ }^{31} \mathrm{P}$ trans to carbon or nitrogen $[\Delta \delta(2,6)=4.47 \mathrm{ppm} ; \Delta \delta(\mathbf{3 . 7})=$ 3.84 ppm].

Treatment of 1 with thallium acetylacetonate gave the soluble complex $\left[\mathrm{Pd}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right.\right.$ $\left.\left.\left.\mathrm{NMe}_{2}\right\}\left(\mathrm{H}_{3} \mathrm{CCOCHCOCH}\right)_{3}\right)\right] 10$ as an air-stable solid, which was fully characterized (see Section 3 and Table 1). The ${ }^{1}$ H NMR spectrum showed singlet resonances at $\delta 5.37$ and 2.03 ppm assigned to the CH and to the two C-Me groups respectively. The ${ }^{13} \mathrm{C}$ NMR spectrum showed singlets at $\delta 100.65$ and $\delta 28.03 \mathrm{ppm}$, assigned to the CH and $\mathrm{C}-\mathrm{Me}$ resonances respectively.

Reaction of 1 with ditertiary diphosphines in a complex 1/diphosphine 2:1 molar ratio gave the dinuclear cyclonetallated complexes $\left[\left\{\mathrm{Pd}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2}-\right.\right.\right.$ $\left.\left.\left.\mathrm{CH}_{2} \mathrm{NMe}_{2}\right](\mathrm{Cl})\right)_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PRPPh}_{2}\right)\right] \quad[11: \quad \mathrm{R}=$ trans$\left.\mathbf{C H}=\mathbf{C H} ; 12: \mathbf{R}=\left(\mathrm{CH}_{2}\right)_{3} ; 13: \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{1}\right]$ respectively, and treatment of 1 with silver perchlorate followed by ditertiary diphosphines gave the dinuclear cyclometallated complexes $\left[\left\{{\widetilde{\mathrm{Pd}}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right]_{2}(\mu-\mathrm{Ph}}_{2} \mathrm{PR}-\right.\right.$
$\left.\left.\mathrm{PPh}_{2}\right) \mathrm{HClO}_{4}\right]_{2}$ [14: $\mathrm{R}=$ trans $-\mathrm{CH}=\mathrm{CH} ; \quad 15: \mathrm{R}=$ $\left.\left(\mathrm{CH}_{2}\right)_{3}: 16 ; \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{4}\right]$ respectively, which were fully characterised (see Section 3 and Table 1). Electric conductivity measurements in dry acetonitrile solution showed complexes 14-16 to be 1:2 electrolytes [22] (see Section 3). In the ${ }^{1} H$ NMR spectra of compounds 11-13 singlets were observed for the $H C=\mathrm{N}$ and HS resonances (Table 1); no coupling of the $\delta=\mathrm{NL}_{2}$ resonance to the ${ }^{31} \mathrm{P}$ nucleus was observed. In view of this we tentatively assign these compourds the structures depicted in Scheme 2, with the phosphorus atom trans to the phew! arbon atom of the metallated ring. There is only one set of resonances for each cyclopalladated moiety in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and only one singlet for the two ${ }^{31} \mathrm{P}$ nuclei in the $\left.{ }^{31} \mathrm{P}^{1}{ }^{1} \mathrm{H}\right\}$ spectrum. This suggests that the compounds are centrosymmetric, as we have shown before in related compounds [30,31]. In the 'H NMR spectra of complexes 11 and 14, apparent triplets at $\delta 6.75$ and $\delta 8.30 \mathrm{ppm}$ respectively were assigned to the $\mathrm{PC} H=\mathrm{CHP}$ resonances (AA'XX' spin system) with N ca. $4!\mathrm{Hz}$. In the ' H NMR spectra of compounds $14-16$ the NMe resonance is shifted to lower frequency from the expected position, ca. 2.7 ppm , due to shielding of the phosphine phenyl ring.

Treatment of 1 with ditertiary diphosphines in a complex 1 /diphosphine $1: 1$ molar ratio, and silver perchlorate gave the mononuclear cyclometallated complexes $\left[\left\{\mathrm{Pd}^{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right]\right\}$ $\left.\left(\mathrm{Ph}_{2} \mathrm{PRPPh}_{2}-\mathrm{P}, \mathrm{P}\right) \mathrm{KClO}_{4}\right]$ [17: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} ;$ 18: $\mathrm{R}=$ $\left.\left(\mathrm{CH}_{2}\right)_{3}\right]$ respectively (see Section 3 and Table 1). Electric conductivity measurements in dry acetonitrile solution showed the complexes to be 1:1 electrolytes [22] (see Section 3). When the reaction was carried out in the absence of the perchlorate salt, an untreatable mixture was obrained. However, when 1 was treated only with cis-dppe in a complex $1 /$ diphosphine $1: 1$ molar ratio, the mononuclear cyclometallated complex $\left[\left(\mathrm{Pd}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right]\right.$ (cis- $\mathrm{Ph}_{2} \mathrm{PCH}=$ $\mathrm{CHPPh}_{2}-P, P$) ${ }^{2} \mathrm{Cl}$ (19) was obtained, which was fully characterised (see Section 3 and Table 1). Electric

[^1]conductivity measurements in dry acetonitrile solution showed the complex to be a $1: 1$ electrolyte (see Section 3). The ${ }^{34} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showed two doublets for the two inequivalent phosphorus nuclei. The resonance at lower frequency was assigned to the phospliorus nucleus trans to the phenyl carbon atom in accordance with the higher trans influence of the latter with respect to the $\mathrm{C}=\mathrm{N}$ nitrogen atom [32]. The $\mathrm{HC}=\mathrm{N}$ resonance was only coupled to the ${ }^{31} \mathrm{P}$ nucleus trans to nitrogen. In compound 17 the H 5 proton was coupled to both ${ }^{31} \mathrm{P}$ nuclei with ${ }^{4} J\left(\mathbf{P}_{\text {trans }-\mathrm{C}} \mathbf{H}\right)<{ }^{4} J\left(\mathbf{P}_{\text {trans }-\mathrm{N}} \mathrm{H}\right)$. This was confirmed by selective decoupling experiments on the ${ }^{31} \mathbf{P}$ atoms. Although the NMe_{2} group is not coordinated to the metal atom, the melhyl resonance was shifted to lower frequency due to shielding of the phenyl rings on the phosphorus atom trans to carbon.

Treatment of 1 with dpph in a complex 1 /diphosphine 1:1 molar traio gave the mononuclear cyclomerallated complex $\left[\left\{\mathrm{Pd}^{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right.\right.$ $\left.\mathrm{NMe}_{3}\right](\mathrm{CC})\left(\mathrm{Ph}, \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}-\right.$ - $\left.\left.^{P}, P\right\}\right]$ (20) which was fully characterized (see Section 3 and Table 1). Electric conductivity measurements in dry acetonitrile solution showed the compound to be a non-electrolyte. The $\mathrm{Pd}(\mathrm{PP}) \mathrm{Cl}$ moiety can rotate about the $\mathrm{Pd}-\mathrm{C}$ vector so that the palladium coordination plane is at 90° to the metallated phenyl ring, eliminating coupling between the ${ }^{31} \mathrm{P}$ atom and the $H 5$ or the $H \mathrm{C}=\mathrm{N}$ protons [25]; also, no coupling of the $=\mathrm{NCH}_{2}$ resonance to the ${ }^{31} \mathrm{P}$ nucleus was observed. Both ${ }^{31} \mathrm{P}$ resonances were inequivocally assigned (see above).

Garrou [33] has proposed that the ${ }^{31} \mathbf{P}$ chemical shift is influenced by ring size. The data for compounds 17-19 are summarized in Table 2. We have calculated Δ_{R} for compounds for both phosphorus atoms trans to carbon and trans to nitrogen (sec Table 2). In the five-membered ring cases (compounds 17,19) the absolute value of $\boldsymbol{\Delta}_{\mathrm{R}}$ is smaller when the ${ }^{31} \mathrm{P}$ nucleus is

Table 2

	$\mathrm{P}^{\text {b }}$	P_{0}	$\Delta_{\text {R }}$
17	31.78	59.09	27.31
18	31.78	24.38	-7.40
19	31.78	60.29	28.51
	$\mathbf{P}^{\text {c }}$	P_{b}	$\Delta_{\text {R }}$
17	30.79	41.08	10.29
18	30.79	-4.14	-26.65
19	30.79	49.19	18.3
20	30.79	17.58	-13.21

[^2]trans to carbon than to nitrogen; the reverse is true for the six-membered ring compound 18.

3. Experimental details

All reactions were carried out in an atmosphere of dry nitrogen. Solvents were purified by standard meth. ods [34]. Chemicals were reagent grade. Tris(dibenzylideneacetone)dipalladium(0) and thallium acetylacetonate were purchased from Aldrich-Chemie. The diphosphines $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}$ (dppe), $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}$ (dppp) and $\left.\mathrm{Ph}_{2} \mathrm{P}_{2} \mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}$ (dppb) were purchased form Aldrich-Chemie; cis- $\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ (cis-1,2dppe) and trans- $\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ (trans-1,2-dppe) were prepared according to procedures described elsewhere [35]. Microanalyses were carried out at the Servicio de Análisis Elemental at the University of Santiago using a Carlo-Erba Elemental Analyzer. Model 1108. IR spectra were recorded as Nujol mulls or polythene discs on a Perkin-Elmer 1330 and on a Mattson (Servicio de Espectroscopía of the University of Santiago) spectrophotometers. NMR spectra were obtained as CDCl_{3} or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ solutions and referenced to $\mathrm{SiMe}_{\perp}\left({ }^{1} \mathrm{H}\right.$, ${ }^{17} \mathrm{C}$) or $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{34} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\right)$ and were recorded on Bruker WM-250, AMX-300 and AC-200 spectrometers. All chemical shifts were reported downfield from the standards.

The synthesis of $2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}$ was performed by heating a chloroform solution of the appropriate quantities of 2-chlorobenzaldehyde and N, N^{\prime}-dimethylethyienediamine in a Dean-Stark apparatus under reflux. ${ }^{13} \mathrm{C}\left({ }^{(1} \mathrm{H}\right) \mathrm{NMR}\left(75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $158.9(\mathrm{C}=\mathrm{N}) ; \delta 135.3(\mathrm{Cl}) ; \delta 134.3(\mathrm{C} 6) ; \delta 131.7, \delta$ 130.0, $\delta 128.6, \delta 127.2(\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5) ; \delta 60.2, \delta$ $60.1\left(\mathrm{CH}_{2}\right) ; \delta 46.00\left(\mathrm{NMe}_{2}\right)$.

CAUTION Perchlorate salts of metal complexes are potentially explosive. Extreme caution should be exercised in handling this material.

3.1. Preparation of $\left[\right.$ Pd/C $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$.
 $\mathrm{Me}_{2} J(\mathrm{Cl}) \mathrm{J}(1)$

$2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} \quad(140 \mathrm{mg}$, 0.67 mmod) and tris(dibenzylideneacetone)dipalladiumi(0) ($300 \mathrm{mg}, 0.33 \mathrm{mmol}$) were added to $25 \mathrm{~cm}^{3}$ of benzene to give a dark red solution which was heated under reflux for 2 h . After cooling to room temperature the solution was filtered to eliminate the small amount of black palladium formed. The solvent was removed under vacuum to give a yellow solid which was chromatographed on a column packed with silica gel. Elution with dichlormethane/ethanol (1%) afforded the final product as a pale yellow solid after concentration. Yield 60%. Anal. Found: C, 42.0; H, 4.7, N, 8.8.
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{ClPd}$ Calc: $\mathrm{C}, 41.7 ; \mathrm{H}, 4.8 ; \mathrm{N}, 8.8 \%$. IR: $\nu(\mathrm{C}=\mathrm{N}) 1616 \mathrm{scm}^{-1} ; \nu(\mathrm{Pd}-\mathrm{Cl}) 349 \mathrm{mcm}^{-1} .{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): \& $172.2(\mathrm{C}=\mathrm{N}) ; \delta 158.0$ (C1); $\delta 150.2$ (C6); $\delta 136.1, \delta 130.7, \delta 127.6, \delta 124.3$ $(\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5) ; \delta 63.5, \delta 53.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; \delta 48.3$ $\left(\mathrm{NMe}_{2}\right)$.

3.2. Preparation of $\int \mathrm{Pd}_{\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right.}$ $\mathrm{NMe}_{2} /(\mathrm{Cl})\left(\mathrm{PP} h_{3}\right) /(2)$

PPh_{3} ($33 \mathrm{mg}, 0.13 \mathrm{mmol}$) was added to a solution of 1 ($40 \mathrm{mg}, 0.13 \mathrm{mmol}$) in acetone ($15 \mathrm{~cm}^{3}$). The mixture was stirred for 4 h , the solvent removed and the product recrystallized from dichloromethane/hexane to give the desired complex as a white solid. Yield 90%. Anal. Found: C, 60.0; H, 5.5; N, 4.6. $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2}$ CIPPd Calc.: $\mathrm{C}, 60.1 ; \mathrm{H}, 5.2 ; \mathrm{N}, 4.8 \%$. IR: $\nu(\mathrm{C}=\mathrm{N}) 1628 \mathrm{~s} \mathrm{~cm}^{-1}$; $v(\mathrm{Pd}-\mathrm{Cl}) \quad 310 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}(62.46 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 176.4(\mathrm{C}=\mathrm{N}) ; \delta 157.1$ (C1); $\delta 148.9$ (C6); $\delta 138.3, \delta 136.1, \delta 129.9, \delta 124.3(\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5) ; \delta$ 55.1, $53.1\left(\mathrm{NCH}_{2}\right) ; \delta 46.2\left(\mathrm{NMe}_{2}\right)$. P-phenyl: $\mathrm{C}_{\mathrm{i}} \delta$ $131.1 ; C_{0} \delta 135.3 \mathrm{~d}, ~ J(\mathrm{PC}) 12.1 \mathrm{~Hz} ; \mathrm{C}_{m} \delta 128.3 \mathrm{~d}$, $J(P C) 11.8 \mathrm{~Hz} ; \mathrm{C}_{p} \delta 131.0$.

Compounds 3, 4 and 5 were obtained following a similar procedure as white solids.

3.3. $\left[\overparen{\mathrm{Pd} /\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} /(\mathrm{Cl})\left(\mathrm{PEtPh}_{2}\right) /\right]}\right.$

 (3)Yield 91\%. Anal. Found: C. 56.2; H, 5.7; N, 5.2. $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{CIPPd}$ Calc.: $\mathrm{C}, 56.5 ; \mathrm{H}, 5.7$; N, 5.3\%. IR: $\nu(\mathrm{C}=\mathrm{N}) 1630 \mathrm{scm}^{-1} ; \nu(\mathrm{Pd}-\mathrm{Cl}) 305 \mathrm{wcm}^{-1} .{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\}$ $\mathrm{NMR}\left(62.46 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta 175.8(\mathrm{C}=\mathrm{N}) ; \delta 157.4$ (C1); $\delta 149.8$ (C6); $\delta 137.2, \delta 130.0, \delta 127.9, \delta 123.8$ (C2, C3, C4, C5); $\delta 59.6,52.8\left(\mathrm{NCH}_{2}\right) ; \delta 45.5\left(\mathrm{NMe}_{2}\right)$. P-phenyl: $C_{i} \delta 129.5 \mathrm{~d},{ }^{J}(\mathrm{PC}) 19.9 \mathrm{~Hz} ; \mathrm{C}_{0} \delta$ 133.64, $J(\mathrm{PC}) 21.4 \mathrm{~Hz} ; \mathrm{C}_{\mathrm{m}} \delta 128.3 ; \mathrm{C}_{p} \delta 131.5$.

3.4. $\left[\mathrm{Pd}_{\left[/ \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NM} e_{2} /(\mathrm{Cl})\left(\mathrm{PEr}_{2} \mathrm{Ph}\right)\right]}\right.$ (4)

Yield 87\%. Anal. Found: C, 52.1; H, 6.5; N, 5.9. $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{CIPPd}$ Calc.: $\mathrm{C}, 52.2 ; \mathrm{H}, 6.3$; $\mathrm{N}, 5.8 \%$. IR: $\nu(\mathrm{C}=\mathrm{N}) 1626 \mathrm{scm}^{-1} ; \nu(\mathrm{Pd}-\mathrm{Cl}) 313 \mathrm{mcm}^{-1}$.

3.5. $\left[\right.$ Pd/C. $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH} \mathrm{CH}_{2} \mathrm{NMe}_{2} /\left(\mathrm{ClHPEt}_{3}\right)\right](5)$

Yield 77\%. Anal. Found: C, 46.7; H, 6.5; N, 6.2. $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{ClPPd}$ Calc.: $\mathrm{C}, 46.9 ; \mathrm{H}, 6.9 ; \mathrm{N}, 6.4 \%$ IR: $\nu(\mathrm{C}=\mathrm{N}) 1629 \mathrm{scm}^{-1} ; \nu(\mathrm{Pd}-\mathrm{Cl}) 293 \mathrm{mcm}^{-1},{ }^{13} \mathrm{C}\left[{ }^{[1} \mathrm{H}\right\}$ NMR (75.47 MHz, CDCl ${ }_{3}$): $\delta 174.4(\mathrm{C}=\mathrm{N}) ; \delta 156.3$ (C1); $\delta 147.6$ (C6); $\delta 133.8, \delta 129.4, \delta 127.5, \delta 123.3$ $(\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5) ; \delta 58.1, \delta 54.7\left(\mathrm{NCH}_{2}\right) ; \delta 44.6$
$\left(\mathrm{NMe}_{2}\right) ; \delta 15.4 \mathrm{~d}, J(\mathrm{PC}) 24.4 \mathrm{~Hz}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta 7.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right.$).

3.6. Preparation of

$\left.\left\lceil\mathrm{Pd}_{6} / \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right\rfloor\left(\mathrm{PPh}_{3}\right) / / \mathrm{ClO}_{4}\right]$ (6)
A solution of 1 ($40 \mathrm{mg}, 0.13 \mathrm{mmol}$) in acetone ($15 \mathrm{~cm}^{3}$) was treated with silver perchlorate (27 mg) and stirred for 2 h . The solution was filtered through Celite to eliminate the AgCl precipitate. PPh_{3} (33 mg , 0.13 mmol) was added to the filtrate and the solution stirred for 4 h , the solvent removed and the product recrystallized from dichloromethane/hexane to give the desired complex as a white solid. Yield 93%. Anal. Found: C, 53.7; H, 4.7; N, 4.1. $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{CIPPd}$ Calc.: C, $54.1 ; \mathrm{H}, 4.7$; N. 4.3%. $\mathbb{R}: \nu(\mathrm{C}=\mathrm{N})$ $1639 \mathrm{mcm}^{-1} .{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8 $176.1(\mathrm{C}=\mathrm{N}) ; \delta 154.3$ (CI); $\delta 150.6(\mathrm{C} 6) ; \delta 138.6, \delta$ 130.5, $\delta 129.6, \delta 125.4$ (C2, C3, C4, C5); $\delta 66.4, \delta$ $55.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), \delta 48.1\left(\mathrm{NMe}_{2}\right)$. P-phemyl: $\mathrm{C}_{i} \delta$ $128.0 \mathrm{~d}, J(\mathrm{PC}) 22.6 \mathrm{~Hz} ; \mathrm{C}_{6} \delta 135.3 \mathrm{~d}, \mathrm{~J}(\mathrm{PC}) 12.8 \mathrm{~Hz}$; $\mathrm{C}_{\mathrm{m}} \delta \mathbf{\delta} 129.0 \mathrm{~d}, \mathrm{~J}(\mathrm{PC}) 10.6 \mathrm{~Hz} ; \mathrm{C}_{p} \delta 132.0 \mathrm{~s}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=169 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

Compounds 7, 8 and 9 were obtained following a similar procedure as white solids.

3.7. $\left(\widetilde{\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{N}_{\mathrm{CH}}^{2} \mathrm{CH}_{2} \mathrm{~N}\right.} \mathrm{Me}_{2} /(\mathrm{PErPh} 2)\right.$) [ClO4](7)

Yield 80%. Anal. Found: C, 50.0; H, 5.1; N, 4.6. $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{ClPPd}$ Calc.: $\mathrm{C}, 50.4 ; \mathrm{H}, 5.1 ; \mathrm{N}, 4.7 \%$. IR: $\nu(\mathrm{C}=\mathrm{N}) \quad 1637 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right)$ NMR $(75.47 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 176.0(\mathrm{C}=\mathrm{N}) ;$ в $154.3(\mathrm{Cl}) ;$ в $150.7(\mathrm{C} 6) ;$ $\delta 137.1, \delta 131.2, \delta 130.1, \delta 125.8(C 2, C 3, C 4, C 5) ; \delta$ $65.8, \delta 51.6\left(\mathrm{NCH}_{2}\right) ; \delta 48.3\left(\mathrm{NMe}_{2}\right) ; \delta 21.2 \mathrm{~d}$, J(PC) $28.1 \mathrm{~Hz}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta \mathbf{i} .4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. P-phenyl: $\mathrm{C}_{i} \delta$ 130.6; $\mathrm{C}_{\circ} \delta 133.6 \mathrm{~d}, \mathrm{~J}(\mathrm{PC}) 10.6 \mathrm{~Hz} ; \mathrm{C}_{\mathrm{m}} \delta 129.5 \mathrm{~d}$, $J(P C) 9.8 \mathrm{~Hz} ; \mathrm{C}_{p} \delta \quad 131.9 \mathrm{~s}$. Specific molar conductivity, $A_{\mathrm{m}}=160 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

3.8. $\int \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} /\left(\mathrm{PEr}_{2} \mathrm{Ph}\right) /-\right.$ $\left[\mathrm{ClO}_{4}\right](8)$

Yield 89\%. Anal. Found: C, 45.5; H, 5.9; N, 5.2 $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{1}$ CIPPd Calc.: C, 46.1; H, 5.5; N, 5.1\%. IR: $\left.\nu(\mathrm{C}=\mathrm{N}) \quad 1637 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}^{2} \mathrm{H}\right\} \quad \mathrm{NMR}(75.47 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 176.0(\mathrm{C}=\mathrm{N}) ; \delta 153.7(\mathrm{Cl}) ; \delta 151.2$ (C6); $\delta 135.5, \delta 131.0, \delta 129.7, \delta 125.4(\mathrm{C} 2, \mathrm{C} 3, \mathrm{C4}, \mathrm{C} 5) ; \delta$ $66.1, \delta 51.6\left(\mathrm{NCH}_{2}\right) ; \delta 49.5\left(\mathrm{NMe}_{2}\right) ; \delta 16.6 \mathrm{~d}, \mathrm{~J}(\mathrm{PC})$ $27.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta 8.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. P-phenyl: $\mathrm{C}_{i} \delta$ 128.5; $\mathrm{C}_{n} \delta \quad 132.6 \mathrm{~d}, J(\mathrm{PC}) 10.6 \mathrm{~Hz} ; \mathrm{C}_{m} \delta 128.9 \mathrm{~d}$, $J(\mathrm{PC}) 9.7 \mathrm{~Hz} ; \mathrm{C}_{p} \delta$ 131.3. Specific molar conductivity, $\Lambda_{\mathrm{m}}=163 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).
3.9. $\int \stackrel{\mathrm{Fd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right.}{ } /\left(\mathrm{PEt}_{3}\right) / / \mathrm{ClO}_{4} I$ (9)

Yield 65\%. Anal. Found: C, 40.9; H, 6.1; N, 5.7. $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{1} \mathrm{ClPPd}$ Calc.: $\mathrm{C}, 40.9 ; \mathrm{H}, 6.1 ; \mathrm{N}, 5.6 \%$. IR: $\nu(\mathrm{C}=\mathrm{N}) \quad 1639 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}(1 \mathrm{H}) \quad \mathrm{NMR}(75.47 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 175.1(\mathrm{C}=\mathrm{N}) ; \delta 151.8(\mathrm{Cl}) ; \delta 150.2(\mathrm{C} 6) ;$ $\delta 135.0, \delta 131.7, \delta 130.5, \delta 126.2(\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5) ; \delta$ $66.7, \delta 52.1\left(\mathrm{NCH}_{2}\right) ; \delta 49.3\left(\mathrm{NMe}_{2}\right) ; \delta 14.7, J(\mathrm{PC})$ $27.9 \mathrm{~Hz}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta 8.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. Specific molar conductiviry, $A_{\mathrm{m}}=142 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{mmol}^{-1}$ (in acetonitrile).

3.10. Preparation of $\left[\widehat{\mathrm{Pd} / \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2^{-}}, ~}\right.$ $\left.\mathrm{NMe}_{2} /\left(\mathrm{H}_{3} \mathrm{CCOCHCOCH}_{3}\right)\right](10)$

To a solution of $1(40 \mathrm{mg}, 0.13 \mathrm{mmol})$ in chloroform ($25 \mathrm{~cm}^{3}$), thallium acetylacetonate ($40 \mathrm{mg}, 0.13 \mathrm{mmol}$) was added and the mixture stirred at room temperature for 12 h . The solution was filtered to eliminate the TICl precipitate and the solvent removed to give the desired complex as a yellow solid which was recrystallized from dichloromethane/bexane. Yield 85%. Anal. Found: C, 50.2; H, 5.9; N, 7.3. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}$ Calc.: C, $50.5 ; \mathrm{H}, 5.8 ; \mathrm{N}, 7.4 \%$. IR: $\boldsymbol{\nu}(\mathrm{C}=\mathrm{N})-1610 \mathrm{scm}^{-1}$; 2,4-pentanedionate: $\nu(\mathrm{C}=\mathrm{C}) \quad 1512 \mathrm{~s} \mathrm{~cm}^{-1} ; \nu(\mathrm{C}=\mathrm{O})$ $\left.1577 \mathrm{~s}, 1389 \mathrm{scm}^{-1} .{ }^{13} \mathrm{C}^{(1} \mathrm{H}\right) \mathrm{NMR}\left(75.47 \mathrm{MHz}, \mathrm{CDCl}_{7}\right)$: $\delta 176.0(\mathrm{C}=\mathrm{N}) ; \delta 157.3(\mathrm{C} 1) ; \delta 146.5(\mathrm{C} 6) ; \delta 131.0$, $\delta 129.9, \delta 126.8, \delta 124.5(\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5) ; \delta 100.7$ (CH, acac); $\delta 59.2, \delta 56.2\left(\mathrm{CH}_{2}\right) ; \delta 46.0\left(\mathrm{NMe}_{2}\right) ; \delta$ 28.0 (Me, acac).

3.1I. Preparation of $\int\left(P \mathrm{Pd} / \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}(H)=\mathrm{NCH}_{z} \mathrm{CH}_{2}-\right.$ $\left.\mathrm{NMe}_{2} \mathrm{~J} \mathrm{Cl}\right)_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{PPh}_{2} \mathrm{~J}\right.$ (13)

$\left.\mathrm{Ph}_{2} \mathrm{P}_{\left(\mathrm{CH}_{2}\right.}\right)_{4} \mathrm{PPh}_{2}(27 \mathrm{mg}, 0.06 \mathrm{mmol})$ was added to a solution of 1 ($40 \mathrm{mg}, 0.13 \mathrm{mmol}$) in acetone ($15 \mathrm{~cm}^{3}$). The mixture was stirred for 4 h , the solvent removed and the product recrystallized from dichloromethane/hexane to give the desired complex as a white solid. Yield 77%. Anal. Found: C, 56.6; H, 5.7: N, 5.3. $\mathrm{C}_{58} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}$ Calc.: C, 56.6; H, 5.5; N . 5.3%. IR: $v(\mathrm{C}=\mathrm{N}) 1628 \mathrm{scm}^{-1} ; v(\mathrm{Pd}-\mathrm{Cl}) 290 \mathrm{mcm}^{-1}$. ${ }^{13} \mathrm{C}[1 \mathrm{H}\} \mathrm{NMR}(62.46 \mathrm{MHz}, \mathrm{CDCl}):, \delta 175.7(\mathrm{C}=\mathrm{N}) ; \delta$ $157.7(\mathrm{C} 1) ; \delta 148.1(\mathrm{C} 6) ; \delta 137.3, \delta 129.8, \delta 127.8, \delta$ $124.0(\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5) ; \delta 59.3,55.8\left(\mathrm{NCH}_{2}\right) ; \delta 45.8$ (NMe_{2}). P-phenyl: $\mathrm{C}_{i} \delta$ 131.5; $\mathrm{C}_{j} \delta 134.0 \mathrm{~d}, J(\mathrm{PC})$ $11.5 \mathrm{~Hz} ; \mathrm{C}_{m} \delta 128.4, J(\mathrm{PC}) 10.4 \mathrm{~Hz} ; \mathrm{C}_{p} \delta 130.7$.

Compounds 11 and 12 were synthesized following a similar prncedure.

> 3.12. $\left[/ \mathrm{Pd} / \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} /(\mathrm{CH})_{2}(\mu-\right.$ trans-Ph

Yield 80%. Anal. Found: C, 56.2; H, 5.0; iN, 5.3. $\mathrm{C}_{4 \mathrm{~B}} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}$ Calc.: C, $55.9 ; \mathrm{H}, 5.1 ; \mathrm{N}, 5.4 \%$. IR: $\nu(\mathrm{C}=\mathrm{N}) 1631 \mathrm{scm}^{-1} ; \nu(\mathrm{Pd}-\mathrm{Cl}) 300 \mathrm{w} \mathrm{cm}^{-1}$.

3.13. $\left[/ \mathrm{Pd} / \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH} \mathrm{CH}_{2} \mathrm{NM}_{2} \mathrm{JlCl}\right)_{2}(\mu-$ $\left.\left.\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right)\right]$ (12)

Yield 91\%. Anal. Found: C, 56.1; H, 4.9; N, 5.0. $\mathrm{C}_{49} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}$ Calc.: C, 56.2; H, 5.4; N, 5.3%. $\nu(\mathrm{C}=\mathrm{N}) \quad 1624 \mathrm{scm}^{-1} ; \nu(\mathrm{Pd}-\mathrm{Cl}) 300 \mathrm{w} \mathrm{cin}^{-1} .{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right)$ NMR ($62.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.9(\mathrm{C}=\mathrm{N}) ; \delta 157.5$ (C1); $\delta 149.5$ (C6); $\delta 137.4, \delta 138.0, \delta 127.3, \delta 124.2$ (C2, C3, C4, C5); $\delta 59.5,55.7\left(\mathrm{NCH}_{2}\right) ; \delta 45.8\left(\mathrm{NMe}_{2}\right)$. P-phenyl: $\mathrm{C}_{i} \delta 129.9 ; \mathrm{C}_{i} \delta 133.2 \mathrm{~d}, J(\mathrm{PC}) 11 \mathrm{~Hz} ; \mathrm{C}_{m} \delta$ $128.5, J(\mathrm{PC}) 11 \mathrm{~Hz} ; \mathrm{C}_{p} \delta 130.7$.

Compounds 14, 15 and 16 were synthesized following a similar procedure to that for 6 but using a 1/diphosphine 2:1 molar ratio.

3.14. $/ / \mathrm{Pd}_{\mathrm{P}} / \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} / /_{2}(\mu$-trans$\left.\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right) /\left(\mathrm{ClO}_{4} \mathrm{~J}_{2}(14)\right.$

Yield 82%. Anal. Found: C, 49.2; H, 4.6; N, 4.8. $\mathrm{C}_{+\mathrm{K}} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}$ Calc.: C, $49.8 ; \mathrm{H}, 4.5 ; \mathrm{N}, 4.8 \%$. IR: $\nu(\mathrm{C}=\mathrm{N}) 1639 \mathrm{~m}^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=320 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

3.15. $/ / \widehat{\mathrm{Pd} / \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N} M e_{2}} \mathrm{~J}_{2}(\mu-$ $\left.\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right) /\left(\mathrm{ClO}_{4} \mathrm{I}_{2}\right.$ (${ }^{(15)}$

Yield 55%. Anal. Found: C, 50.2; H, 4.8; N, 4.8. $\mathrm{C}_{49} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}$ Calc.: $\mathrm{C}, 50.1 ; \mathrm{H}, 4.8 ; \mathrm{N}, 4.8 \%$. IR: $\nu(\mathrm{C}=\mathrm{N}) 1635 \mathrm{mcm}^{-1}$. Specific molar conductivity, $A_{\mathrm{m}}=315 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

3.16. $/ / \mathrm{Pd}_{6} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NM}_{2} \mathrm{H}_{3}(\mu-$ $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2} \mathrm{j} / 7 \mathrm{ClO}_{4} \mathrm{I}_{2}$ (16)

Yield 83%. Anal. Found: $\mathrm{C}, 50.5 ; \mathrm{H}, 4.8 ; \mathrm{N}, 4.7$. $\mathrm{C}_{50} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}$ Calc.: C, $50.5 ; \mathrm{H}, 4.9 ; \mathrm{N}, 4.7 \%$. IR: $\nu(\mathrm{C}=\mathrm{N}) 1637 \mathrm{~s} \mathrm{~cm}^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=309 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

Complexes 17 and 18 were prepared following a similar procedure to that for 14 using a 1 /diphosphine 1:1 molar ratio.


```
(Ph}\mp@subsup{2}{2}{}\mp@subsup{\textrm{PCCH}}{2}{}\mp@subsup{)}{2}{}\mp@subsup{\textrm{PPh}}{2}{}-\textrm{P},\textrm{P})/[\mp@subsup{\textrm{ClO}}{4}{}](17
```

Yield 63%. Anal. Found: C, 57.2; H, 5.3; N, 3.6. $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{ClP}_{2} \mathrm{Pd}$ Calc.: C, 57.0; $\mathrm{H}, \mathbf{5 . 0} ; \mathrm{N}, \mathbf{3 . 6 \%}$. IR: $\nu(\mathrm{C}=\mathrm{N}) 1618 \mathrm{mcm}^{-1}$. Specific molar conductivity, $A_{\mathrm{m}}=156 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).
3. 18. $\int \stackrel{\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{N}\right.}{\mathrm{CH}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} /\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3}-\right.$ $\left.\mathrm{PPh}_{2}-\mathrm{P}, \mathrm{P}\right) / \mathrm{MClO}{ }_{4} /(18)$

Yield 77%. Anal. Found: C, 57.5 ; H, 5.0; N, 3.5. $\mathrm{C}_{38} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{ClP}_{2} \mathrm{Pd}$ Calc.: C, $57.5 ; \mathrm{H}, 5.2 ; \mathrm{N}, 3.5 \%$.

IR: $\mu(\mathrm{C}=\mathrm{N}) 1620 \mathrm{~m} \mathrm{~cm}^{-1}$. Specific molar conductivity, $A_{\mathrm{m}}=153 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

3.19. Preparation of $\left[\mathrm{Pd}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right.\right.$ $\mathrm{NMe}_{2} /(\mathrm{Cl})\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PP} h_{2}-\mathrm{P}, \mathrm{P}\right) /(20)$

$\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}$ ($51 \mathrm{mg}, 0.12 \mathrm{mmol}$) was added to a suspension of $1(40 \mathrm{mg}, 0.13 \mathrm{mmol})$ in acetone ($15 \mathrm{~cm}^{3}$). The mixture was stirred for 4 h at room temperature, the resulting precipitate was filtered off and recrystallized from dichloromethane/hexane to give the desired product as a pale yellow solid. Yield 87%. Anal. Found: C, 63.0; H, 5.6; N, 3.8. $\mathrm{C}_{39} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{CIP}_{2} \mathrm{Pd}$ Calc.: C, 63.0; H, 5.8; N, 3.8\%. IR: $\boldsymbol{\nu}(\mathrm{C}=\mathrm{N})$ $1626 \mathrm{sm}^{-1} ; \nu(\mathrm{Pd}-\mathrm{Cl}) 301 \mathrm{~m} \mathrm{~cm}^{-1}$. ${ }^{13} \mathrm{C}\left[{ }^{\prime} \mathrm{H}\right] \quad \mathrm{NMR}$ ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 182.5(\mathrm{C}=\mathrm{N}$); $\delta 149.1$ (C6); δ 137.9, $\delta 132.9, \delta 130.1, \delta 126.6$ (C2, C3, C4, C5); δ 59.3, $\delta 58.0\left(\mathrm{NCH}_{2}\right) ; \delta 45.5\left(\mathrm{NMe}_{2}\right)$. P-phenyl: $\mathrm{C}_{i} \delta$ $125.7 \mathrm{~d}, 124.3 \mathrm{~d}, J(\mathrm{PC}) 44.0 \mathrm{~Hz} ; \mathrm{C}_{,} \delta 134.2 \mathrm{~d}, \delta 133.5 \mathrm{~d}$, $J(\mathrm{PC}) 13.6 \mathrm{~Hz} ; \mathrm{C}_{n}, \delta \quad 130.4 \mathrm{~d}, \delta 130.4 \mathrm{~d}, J(\mathrm{PC}) 9.8 \mathrm{~Hz}$; $\mathrm{C}_{p} \delta 132.8$.
Compound 19 was made using a similar procedure to that of 20.

> 3.20. $\left[\mathrm{Pd} / \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} /(\mathrm{cis}-\right.$ $\left.\left.\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}-\mathrm{P}, \mathrm{P}\right)\right] / \mathrm{Cl}(19)(19)$

Yield 88%. Anal, Found: C, $62.0 ; \mathrm{H}, 5.0, \mathrm{~N}, 3.8$. $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{ClP}_{2} \mathrm{Pd}$ Calc.: $\mathrm{C}, 62.3 ; \mathrm{H}, 5.2 ; \mathrm{N}, 3.9 \%$. IR: $\left.\nu(\mathrm{C}=\mathrm{N}){ }^{2} 1618 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}^{1} \mathrm{H}\right) \quad \mathrm{NMR}(75.47 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 174.4(\mathrm{C}=\mathrm{N}) ; \delta 157.8(\mathrm{Cl}) ; \delta 137.2, \delta$ $131.6, \delta 129.7, \delta 123.8(\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5) ; \delta 59.1, \delta$ $56.0\left(\mathrm{NCH}_{2}\right) ; \delta 45.4\left(\mathrm{NMe}_{2}\right)$. P-phenyl: $\mathrm{C}_{i} \delta 130.5$; $\mathrm{C}_{\rho} \delta \quad 133.5 ; \mathrm{C}_{m} \delta 128.6, \delta 128.2 ; \mathrm{C}_{\mathrm{p}} \delta \quad 130.0$. Specific molar conductivity, $\quad \Lambda_{m}=$ $112 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

Acknowledgements

We would like to thank the Xunta de Galicia (XUGA20903A94) for financial support.

References

[1] 1. Omae. Comord Chim. Rev. 79 (1979) 287; 32 (1979) 235: E.C. Constable, Polyhedron, I (1984) 1037: I. Omae, Coord. Chem. Rec., 53 (1984) 26i; Organonesalfic Intramolecular-coordination Compounds, Elsevier Science. Amsterdam. 1986; V.V. Dunina, O.A. Zalevskaya and V.M. Potapov, Russ. Chem. Rer., 571 (1984) 250; G.R. Newkone, W.E. Puckett. W.K. Gupta and G.E. Kiefer, Chem. Reva, 86 (1986) 451; A.D. Ryabov, Chem. Rec., 90 (1590) 403.
[2] A.D. Ryabov. Synthesis. 3 (1985) 233.
(31 J. Dupont, M. Pfoffor, J.C. Daran and J. Couteron. J. Chem. Soc., Dahon Trans.. (1988) 2421: M. Pfeffer, J.P. Sunter, M.A. Rotevel, A. de Cian and J. Fischer, Tetrahedron, 48 (1992) 2440.
[4] A.D. Ryabov. I.K. Sakodinskaya and A.K. Yassimirsky. I. Chem. Soc., Perkin Trans. 2. (1983) 1511.
[5] A.D. Ryabov, R. van Eldik, G. Le Borgire arrat M. Pfelfer, Organometallics. 12 (1993) 1386.
[6] S. Trofimenko, Inorg. Cheon., 12 (1973) 1215.
[7] R.M. Ceder, I. Sales, X. Solans and M. Font-Altaba, J. Chern Soc., Dolton Trams., (1986) 1351.
[8] G.B. Cayhill and PJ. Steel. J. Organomet. Chem., 395 (1930) 375.
[9] G.B. Caybill and P.J. Steel, J. Organomet. Chern., 395 (I990) 359.
[10] J.L. Cosas. E. Gayoso. J.M. Vila, M.T. Percira and M. Gayeso, Synth. React Morg. Met-Org. Chem., 21 (1991) 263.
[1I] J.M. Vila, M.T. Pereira, M. Gayoss, M.C. Rodriguez J.M. Onigueira and M. Thumon-Pett. J. Organomet. Chem, 426 (1992) 267; J.M. Vila, M.T. Pereira, M. Gayoso, M.C. Rodriguez, J.M. Ortigueira, J.J. Fernander and M. López Torres. J. Organonet. Chem, 479 (1994) 37.
[12] J.M. Vita its. Gayoso. M.T. Pereim, M. Ióper Thres, G. Alonso and J.J. Fermández, J. Organomet. Chem, 445 (1993) 287.
[13] J.M. Vila. M. Gayoso, M.T. Pereira. M. López Torres, J.J. Femindez. A. Fersindez and J.M. Ortigueira, J. Orgarowez Chem., 445 (i993) 287.
[14] Latin-American Inorganic Chemistry Met. 2120P. 13-17 Septernier 1093, Santiago de Compositha, Spain: 30th ICCC. PSJ-28, 24-29 July J994, Kyolo, Japrun.
[15] C.M. Anderson, R.J. Puddephan. G. Ferguson and A.J. Lough, J. Chem. Soc.. Chem. Compuri., (1989) 1297; M. Crespar X. Solans and M. Font-Bardia, Orgerometallics. $/ 4$ (1995) 355.
[16] J. Albert, M. Gómez, J. Granell and J. Sales, Otgamometallics, 9 (1900) 1405.
i-7] C.M. Anderson, M. Crespo, M.C. Jennings, A.J. Lough, G. Ferguson and R.J. Puaddepham. Organowerallics. 10 (1991) 2672.
[18] Y. Ustynyuk, V.A. Chernov and J.V. Barinov, J. Orgamomet. Chein. 29 (1971) C53.
[19] J. Granell, D. Sánz, J. Sales, X. Solans and M. Font-Altaba, J. Chem Soc., Dolton Trams. (1986) 1785.
[20] H. Onote and I. Moritani. J. Organomet. Chent, 43 (1972) 431.
[21] H. Onoue. K. Minami and K. Nakagawa, BulL Cheme Soc. Jpar, 43 (1970) 3480.
[22] W.J. Geary, Coord Chem Rer., 7 (1971) 81.
[23] R. Borque, J. Granelf, J. Sales, M. Fons-Bardia and X. Solans, J. Organomer. Chem.. 153 (1994) 147.
[24] J. Albert, J. Granell. J. Sales, M. Font-Bardia and X. Solmas, Organowetalfics, 14 (1995) 1393.
[25] J.M. Vila, M. Gayoso, M.T. Pereira, A. Romar, J.J. Fersúrmedez and M. Thomon-Pet. J. Organomer. Chern. 401 (1991) 385.
[26] J.M. Vila. M. Gaycso, M.T. Pereira, M. López. Torres, G. Alphso and JJ. Ferneindez, J. Orgunomer. Chum, 485 (1993) 287.
[27] J.M. Vilh, M.T. Pentira, M. Gayoso, M.C. Rodriguea, J.M. Ontigueir., J.J. Femández and M. López Torres, J. Organomet. Chem. 479 (1994) 37.
[28] J.M. Vila, M. Gayoso. J.J. Femindez, J.M. Ortigueiga and A. Suárez. Polyhedrow, 22 (1900) 2741.
[29] J.M. Vila. M. Gayoso. M. López Tortes, J.I. Femárdez, A. Femández. J.M. Ortigueira, N.A. Bailey aikut H. Adamss, J. Organomet. Chem., $5 / /$ (1996) 129.
[30] JM. Vita. M. Gaycio, A Femández, H. Adams and N.A. Bailey, J. Orgunomer. Chem.. +48 (1993) 233.
[31] J.M. Vila. M. Gayoso, M.T. Pereim. J.M. Ortigueira, A. Femandez. H. Adams and N.A. Bailey, Polyhedron, 12 (1993) 171.
[32] P.S. Pregosin and R.W. Kuntz, ${ }^{31} \mathbf{P}$ and ${ }^{13} \mathrm{C}$ NMR of transition metal phosphine complexes, in P. Diehl, E. Fluck and R. Kosfeld (eds.). NMR. Vol. 16. Springer, Berlin, 1979.
[33] P.E. Garrou, Chem Rell., 81 (1981) 229.
[34] D.D. Perrin, W.L.F. Ammarego and D.P. Pemin, Purification of Laboratory Chemicals, Pergamon, Oxford, 2nd edn., 1983.
[35] W. Hewerston and H.R. Watson, J. Chem. Soc., (1962) 1490.

[^0]: ${ }^{7}$ Corresponding uuthor.
 ' Deceased.

[^1]: Notes to Table 1:
 ${ }^{2}$ In CDCl_{3}. Measured at 100.6 MHz (ca $\pm 20^{\circ} \mathrm{C}$); chemical shifts (δ) in ppm (± 0.1) to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ -
 "In CDCl_{3}, untess otherwise stated. Measured at 250 MHz (ca. $\pm 20^{\circ} \mathrm{C}$; chemical shifit (8) in $\mathrm{ppm}\left(\pm 0.01\right.$) 10 high freqpericy of SiMe ${ }_{\downarrow}$.

 * Coupling constants in Hz.
 ${ }^{d}$ s, singlet; d, doublet; dd, doublet of doublets; L triplet; ad, triplet of doubles: m, muliplet.
 - Occluded by the phosphine resonances.
 'The higher value was assigned to the $=\mathrm{NCH}_{2}$ protons and the lower one to the $\mathrm{CH} \mathrm{H}_{2}$ NMe N_{2} protons; \boldsymbol{N} yalues in parentheses.
 ${ }^{8}$ For 17-20 $\delta(P$-trans-C $)<\delta(P$-trams-N $)$.
 ${ }^{\mathrm{h}}$ асас: $\delta(\mathrm{CH}) 5.38 \mathrm{ppm}$; $\delta(\mathrm{Me}) 2.04 \mathrm{ppm}$.
 ${ }^{i} \delta(\mathrm{C} H=\mathrm{CH}): 11,6.75 \mathrm{ppm}: 14.8 .30 \mathrm{ppm}$.
 ${ }^{j}$ Occluded by methylene (phosphine) resonances.
 * Oecluded by solvent resonances.
 ${ }^{1}$ in acetone-d.
 " $\quad \mathrm{J}(\mathrm{PP})$ values in parentheses.

[^2]: ${ }^{2} \mathrm{P}_{\mathrm{a}}$ phosphorus trans to nitrogen. P_{b} phosphonus trans to carbon.
 ${ }^{6}$ Equivaleat ${ }^{1}$ phosphorus ($-\mathrm{PPh} \mathbf{2}_{2}$) in a non-chelated analogue (compound 15).
 ${ }^{5}$ Equivalent phosphorus ($-\mathrm{PPh}_{2}$) in a non-chelated analogue (compound 12).

